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with C6D6 to yield the diphenyl-rf10 complex and neopentane-^2 

(eq 6)).18 There are no detectable intermediates, and kinetic 
measurements by 1H NMR reveal that the reaction is first order 
in both 3 and benzene, that kH/kD = 1.5 (1), and that 3 is the 
intermediate in the reaction12b of 1 with benzene to yield 9. In 
contrast, neither 2 nor 4 react with benzene over the course of 
12 h at 80 0C. Toluene reacts with 3 to yield neopentane and 
both benzylic- and ring-metalated products, the latter predomi­
nating (75 ± 10%; eq I).25 Interestingly, the reaction of 3 (as 

CH3 

Th + C(CH3I4 (7) 

assessed by 1H NMR and GC-MS) with olefins does not result 
in significant metathesis8,9,26 but rather (e.g., propylene) in the 
formation of complex mixtures of ring-opened products.27 The 
difficult accessibility of alkylidene species such as 8 (possibly due 
to an unfavorable formal thorium oxidation state or to poor 
thorium-alkylidene orbital overlap) is also underscored by the lack 
of reactivity of 3 with phosphines; alkylidenephosphine complexes28 

are not formed. 
These results suggest not only that the organoactinides will 

display a rich cyclometalation chemistry but that the reaction 
patterns of the resulting metallacycles will be in many respects 
unusual. The degree to which this is so is under continuing 
investigation. 
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The interaction of carbon monoxide with small carbon frag­
ments bound to metal atoms is believed to be important in CO 
reduction and related chemistry.1,2 Here we report that reaction 
of carbon monoxide with the bridging methylidyne complex, 
[cw-Cp2Fe2(CO)2(/i-CO)(M-CH)]+PF6- (I),3 Cp = J7-C5H5), yields 
the acylium complex [m-Cp2Fe2(CO)2(M-CO)(M-CHCO) J+PF6" 
(2). The structure, spectra, and chemical properties of 2 suggest 
that the bonding of the M - C H C O ligand in 2 should be regarded 
as analogous to that in acylium cations such as CH3C=O+ , with 
a contributing formulation as a two-electron three-center bound 
bridging ketene (see Scheme I). 

The methylidyne carbon of 1 is electrophilic3 and is attacked 
by nucleophiles such as trimethylamine, which produces the adduct 
)cw-Cp2Fe2(CO)2(M-CO)[M-CHN(CHj)3]I

+PF6" (3, 80%),4 and 
K+OC(CH3)3~, which produces a 5:1 mixture of the two possible 
isomers of Cp2Fe2(CO)2(M-CO) [ M - C H O C ( C H 3 ) 3 ] (4, 43%)4 in 
which the Cp ligands are cis to one another.5 

Remarkably, 1 is electrophilic enough to form a 1:1 adduct with 
CO, whereas the related bridging alkylidyne complexes (e.g., 
[Cp2Fe2(CO)2(M-CO)(M-CCH3)]

+BF4") are inert to CO.6 When 
a slurry of 1 in CH2Cl2 was stirred under a CO atmosphere (500 
torr) for 2 h at room temperature, the dark red-purple crystalline 
solid 2 formed and was isolated in 90% yield.7 Similarly reaction 
of 1 with 90% 13CO gave the M-CH13CO complex 2-13C. No 
evidence for scrambling of the 13C label with the metal-bound 
carbonyl ligands of 2-13C was detected by IR or NMR spec­
troscopy. In the 1H NMR spectrum of 2-13C, the resonance due 
to M-CZZ13CO at 5 6.94 appears as a doublet with 7i3CH = 4.4 Hz. 
The infrared band for the M - C H C O carbonyl of 2 appears at 2092 
cm"1 and is shifted to 2057 cm"1 for 2-13C. 

The molecular structure of 2 was determined by X-ray crys­
tallography8 and consists of discrete [Cp2Fe2(CO)2(M-CO)(M-
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Figure 1. ORTEP drawing of the [(^-C5Hs)2Fe2(CO)2(M-CO)(M-
CHCO)]+ in 2. The following selected bond lengths are given in ang­
stroms, and bond angles are given in degrees: Fe-Fe, 2.548 (1); Fe-C,, 
1.776 (4); Fe-C„, 1.948 (4); (CHCO)Fe-C, 1.994 (4); Fe-C8, 1.730 (-); 
C1-O1, 1.135 (7); C1-O1, 1.134 (7); C„-Ob, 1.164 (7); C-C1, 1.338 (8); 
C-C1-O1, 174.9 (6); H-C-C1 , 111 (2); Fe-C-C1, 110.6 (3); Fe-C-H, 
121 (2); Fe-C1-O,, 177.7 (4); Fe-Cb-Ob, 139.1 (1); Fe-Cb-Fe', 81.7 (2); 
Fe-C-Fe', 79.4 (2); Cb-Fe-C, 99.2 (2); C-Fe-Cb , 89.2 (2); C-Fe-C, 
97.9 (2); Fe'-Fe-Cg, 137.6 (-); C8-Fe-C1, 122.1 (-); Cg-Fe-Cb, 118.3 
(-); and C8-Fe-C, 123.0 (-). C8 is the center of gravity of the Cp group. 
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CHCO)]+ cations (Figure 1) and PF6" anions. The cation pos­
sesses rigorous crystallographic Cs-m symmetry with the M - C H C O 
and ^-CO ligands lying in the mirror plane at x = O in the lattice. 
The C-C-O angle of the M - C H C O ligand is 174.9 (6)° and the 
acylium carbonyl is directed anti to the cis-Cp ligands of 2. 
Formation of this stereoisomer is the result of nucleophilic attack 
of CO on the M-CH ligand of 1 from the side opposite the relatively 
large Cp rings. 

(8) Single crystals of [Cp2Fe2(CO)2(M-CO)(M-CHCO)I+PF6- (2) obtained 
by diffusion of an ether layer into an acetone solution of 2 at O °C are 
orthorhombic, space group Cmca-Dy,1* (No. 64) with a = 17.696 (3) A, b = 
13.043 (3) A, c = 15.273 (3) A, and Z = 8 |(t;5-C5H5)2Fe2(M-CO)(M-
CHCO)(CO)2)IPF6) formula units (daM = 1.93 g/cm3; M.(MO Ka) = 1.87 
mm-1). Three-dimensional diffraction data [a total of 3113 independent 
reflections having 20MoKa < 63.70° (the equivalent of 1.5 limiting Cu Ka 
spheres)] were collected on a computer-controlled Nicolet Pl autodiffrac-
tometer using graphite-monochromated Mo Ka radiation and full 1° wide 
oj-scans. The structural parameters have been refined to convergence [R 
(unweighted, based on F) = 0.044 for 1594 independent absorption-corrected 
reflections having 20MoKa < 63.7° and / > 3<r(/)] in cycles of weighted cas­
cade-blocked least-squares refinement that employed weights based on 
counting statistics, anisotropic thermal parameters for all non-hydrogen atoms, 
and isotropic thermal parameters for all hydrogen atoms. See paragraph at 
end regarding supplementary material. 

While the M - C H C O ligand of cation 2 can be formulated as 
an acylium species A, some contribution from a bridging ketene 
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formulation B with two-electron three-center bonding is required 
to explain the observed bond lengths and IR spectra. The C-O 
bond length of 1.135 (7) A for the M - C H C O ligand is 0.03 A 
longer than the C-O bond OfCH3C=O+SbF6- (1.108 (15) A)9 

and 0.03 A shorter than the C-O bonds OfCH 2=C=O (1.16(1) 
A)10 and (CH 3 )HC=C=O (1.171 (2) A).11 Similarly, the C-C 
bond of the M - C H C O ligand (1.338 (8) A) is 0.05 A shorter than 
the C-C bond OfCH3C=O+SbF6" (1.385 (16) A)9 and 0.03 A 
longer than the C-C bonds of C H 2 = C = O (1.31 (1) A)10 and 
(CH 3 )HC=C=O (1.306 (2) A).11 The infrared stretching fre­
quency of the M-CHCO ligand of 2 (2092 cm"1) is 208 cirf1 lower 
in energy than the CO stretch of CH 3 C=O + (2300 cm"1)9 and 
is comparable to that observed for ketene (2153 cm"1) and 
metal-substituted ketenes (1990-2018 cm-1).2 ' Comparison of 
the IR stretching frequencies of the M-CO ligands of the complexes 
Cp2Fe2(CO)2(M-CO)(M-CH2), 2, and 1, which are seen at 1773, 
1822, and 1856 cm"1, respectively, suggests that the positive charge 
on 2 is partially delocalized onto the iron framework. 

The closest analogies to the acylium complex 2 are the com­
plexes Cp(CO)2Mn[M-C(CO)C6H5]Re(CO)4

12 and Cp-
(CO)2Mn[M-C(CO)C6H4-P-CH3]Mn(CO)4.13 In the latter 
complex, the M-C(CO)R ligand has a C-C bond length of 1.326 
(6) A and a C-O bond length of 1.167 (5) A. Bridging ketene 
formulations were stressed by the authors in describing the 
structures of these complexes.12,13 

The bridging acylium complex 2 is readily attacked by nu-
cleophiles at the acylium carbon. Reaction of 2 with water in 
CH2Cl2 gives the carboxylic acid CW-Cp2Fe2(CO)2(M-CO)(M-
CHCO2H) (5, 40%);4 ammonia gives the amide CW-Cp2Fe2-
(CO)2(M-CO)(M-CHCONH2) (6, 30%);4 K+HB[OCH(CH3)2]3" 
gives the aldehyde CW-Cp2Fe2(CO)2(M-CO)(M-CHCHO) (7, 
50%).4 

The ease with which the bridging methylidyne complex 1 reacts 
with CO to form the new carbon-carbon bond of the acylium 
complex 2 suggests that such processes should be considered as 
possibilities in heterogeneous catalysis where surface-bound me­
thylidyne species have been proposed. 
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